- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Chen, Liao Y. (2)
-
Chan, Ruth (1)
-
Chang, Hsueh‐Chia (1)
-
Chen, Liao (1)
-
Falato, Michael (1)
-
Fan, Fei (1)
-
Hanjaya‐Putra, Donny (1)
-
Jeong, Donghyun_Paul (1)
-
Montes, Daniel (1)
-
Saha, Sanjoy (1)
-
Taglione, Angela (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Falato, Michael; Chan, Ruth; Chen, Liao Y. (, RSC Advances)AQP7 is one of the four human aquaglyceroporins that facilitate glycerol transport across the cell membrane, a biophysical process that is essential in human physiology. Therefore, it is interesting to compute AQP7's affinity for its substrate (glycerol) with reasonable certainty to compare with the experimental data suggesting high affinity in contrast with most computational studies predicting low affinity. In this study aimed at computing the AQP7-glycerol affinity with high confidence, we implemented a direct computation of the affinity from unbiased equilibrium molecular dynamics (MD) simulations of three all-atom systems constituted with 0.16 M, 4.32 M, and 10.23 M atoms, respectively. These three sets of simulations manifested a fundamental physics law that the intrinsic fluctuations of pressure in a system are inversely proportional to the system size (the number of atoms in it). These simulations showed that the computed values of glycerol-AQP7 affinity are dependent upon the system size (the inverse affinity estimations were, respectively, 47.3 mM, 1.6 mM, and 0.92 mM for the three model systems). In this, we obtained a lower bound for the AQP7-glycerol affinity (an upper bound for the dissociation constant). Namely, the AQP7-glycerol affinity is stronger than 1087/M (the dissociation constant is less than 0.92 mM). Additionally, we conducted hyper steered MD (hSMD) simulations to map out the Gibbs free-energy profile. From the free-energy profile, we produced an independent computation of the AQP7-glycerol dissociation constant being approximately 0.18 mM.more » « less
-
Montes, Daniel; Saha, Sanjoy; Taglione, Angela; Jeong, Donghyun_Paul; Chen, Liao; Fan, Fei; Chang, Hsueh‐Chia; Hanjaya‐Putra, Donny (, Advanced Materials Interfaces)Abstract Granular hydrogels show great promise in biomedical applications by mimicking the extracellular matrix and fostering a supportive microenvironment for tissue regeneration. This study investigates how tuning granular hydrogel properties influences lymphatic tube formation. Microgels were fabricated using norbornene‐modified hyaluronic acid (NorHA) via pipetting or vortexing for 90 s (V90s) and 180 s (V180s), then assembled into granular hydrogels under loose and tight packing conditions. These conditions produced gels with varied pore morphologies and bulk rheological properties. Lymphatic capillary formation occurred only in tightly packed gels, where mechanical properties converged, highlighting the importance of gel morphology over stiffness. V180s samples showed earlier vessel formation as seen in lymphatic gene and protein expression, while pipetted gels exhibited greater capillary connectivity, forming larger vessel clusters and fewer small satellite structures. The pipetting gels also supported lower‐curvature, more linear capillary networks that bridged multiple droplets, likely due to reduced entrapment in large voids compared to vortexed gels. These findings suggest that in bulk granular gels, lymphatic tube formation is governed not by mechanical stiffness but by pore size and gel topology (periodicity). Understanding and optimizing these morphological parameters can inform future strategies in lymphatic tissue engineering and regenerative medicine.more » « less
An official website of the United States government
